

VII Всероссийская научно-практическая конференция с международным участием «ЗАЩИТА ОТ ШУМА И ВИБРАЦИИ»

19-21 марта

Санкт-Петербург

Вопросы применения СП 276.1325800.2016 для оценки шумового воздействия от движения транспорта

Иванов А.В., Никифоров А.В., Кузьмицкий А.М.

ООО «ТЕХНОПРОЕКТ» Санкт-Петербург, Россия

Основные составляющие расчета транспортного шума

- 1. Расчет шумовой характеристики транспортного потока
- 2. Зависимости для вычисления уровней звука в расчетной точке
- 3. Расчет снижения уровня шума расстоянием
- 4. Расчет затухания в воздухе и влияния турбулентности
- 5. Расчет влияния поверхности территории
- 6. Расчет снижения уровня шума экранированием
- 7. Расчет снижения уровня шума зелеными насаждениями
- 8. Расчет коррекции на угол видимости участка дороги
- 9. Расчет коррекции, учитывающей влияние придорожной застройки
- 10. Расчет влияния отраженного звука

Эквивалентный уровень звука автотранспортного потока

$$L_{A_{9KB7.5}} = L_{A_{TP.\Pi}} + \Delta L_{A_{\Gamma PY3}} + \Delta L_{A_{CK}} + \Delta L_{A_{YK}} + \Delta L_{A_{\Pi OK}} + \Delta L_{A_{P\Pi}} + \Delta L_{A_{\Pi ep}};$$

Коррекции:

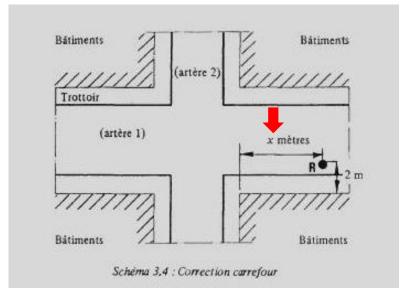
- на долю грузовых машин $\Delta L_{\text{Aгруз}}$,
- на скорость ΔL_{Ack} ,
- уклон ΔL_{Ayk} ,
- тип покрытия $\Delta L_{
 m Anok}$,
- ширину разделительной полосы ΔL_{Apn} ,
- наличие перекрестков $\Delta L_{\text{Апер}}$.

Коррекции определяются по таблицам 6.2-6.7 СП276.1325800

Применение коррекции для нерегулируемого пересечения ΔL_{Anep} .

- Отсутствует формула для расчета коррекции $\Delta L_{\rm Anep}$ в явном виде для случая нерегулируемого пересечения.
- $L_{\text{Аэкв_РТ}} = L_{I-I} + [L_{II-II} (3.0 + 0.1x)]$ должно быть энергетическое суммирование.
- Не указана область применения ф-лы (5) для расчета пересечений улиц типа «U» (2-х сторонняя плотная застройка домами).
- Параметр x должно быть расстояние от расчетной точки до угла фасада у перекрестка (см. рис. 3.4).
- Отсутствуют ссылки, по каким формулам вычисляются значения L_{I-I} и L_{II-II} .

Guide du Bruit de Transports Terrestres. PREVISION DES NIVEAUX SONORES [Text]//CTUR, 1980 (cτp. 58, π.2.1.7).


II. - Estimations dans une rue en «U»

Nous rappelons qu'une rue en « U » est définie de la façon suivante :

c'est une infrastructure de circulation comportant une ou plusieurs files, circulée à simple ou double sens, bordée de constructions quasi continues de part et d'autre des voies de circulation.

Une rue en « U » sera telle que le rapport de la haus se moyenne des bâtiments sur la largeur entre façade soit supérieur à 0,2; la hauteur des bâtiments étans à peu près homogène (pour plus de précision, on se reportera au pay graphe 2.2.1 de la partie II du présent document).

c) Correction carrefour

Pour un récepteur R, tel que défini précédemment, situé à une hauteur h mètres au-dessus du sol, le niveau sonore sera calculé de la façon suivante :

 soit L₁ le niveau sonore dû à l'artère (1), calculé selon la formulé générale indiquée en 2.1.1 ci-dessus,

- le niveau sonore résultant de la présence du carrefour sera :

$$(\text{Leq})_{R} = L_{1} \oplus [L_{2} - (3 + 0.10 x)]$$

Le signe (f) représente le cumul des niveaux sonores (cf. annexe 2 ci-après).

ШХТП потоков железнодорожных поездов


Расхождения между СП276.1325800 и ГОСТ33325:

• состав корректирующих поправок к шумовой характеристике (в СП их три, а в ГОСТ – пять):

ШХТП потоков железнодорожных поездов

- радиус кривизны для коррекции на прохождение кривых участков (в СП $\Delta L_{\rm kp} = 3$ дБА при радиусе от 300 до 500м, а в ГОСТ от 300 до 650м);
- коррекция на тип моста:

ШХТП потоков железнодорожных поездов

• Расчетные ф-лы (19)-(22) СП276.1325800 для максимального уровня звука отличаются от ф-л (8)-(11) ГОСТ33325 составом формул и коэффициентами:

СП276.1325800

- для пассажирских поездов (k = 1)

$$L_{A \text{ Makc.}1}^{\text{жел}} = 24 \text{ lgv}_1 + 42,6;$$

- для грузовых поездов (k = 2)

$$L_{A\text{Makc.2}}^{\text{жел}} = 15 \text{ lgv}_2 + 61,7;$$

- для пригородных электропоездов (k = 3)

$$L_{A\text{Makc},3}^{\text{жел}} = 27.1 \text{ lgv}_3 + 37.2;$$

- для высокоскоростных поездов (k = 4)

$$L_{A\text{Makc.4}}^{\text{жел}} = 45,1 \text{ lg} v_4 - 17,8,$$

ГОСТ33325

для пассажирских поездов (категория 1):

$$L_{1,A_{\text{max}25}} = 24 \, \text{lgv}_4 + 10 \, \text{lg} \left\{ \text{arctg} \left[\frac{l_1}{50} \right] \right\} + 41.2$$

для грузовых поездов (категория 2):

$$L_{Z,A,max,ZS} = 15 \text{ Ig} v_2 + 10 \text{ Ig} \left\{ \text{arctg} \left[\frac{l_2}{50} \right] \right\} + 59.9$$
,

для электропоездов (категория 3):

$$L_{3,A\,\text{max}\,25} = 27,5\,\text{Ig}\,\text{v}_3 + 10\,\text{Ig}\left\{\text{arctg}\left(\frac{l_3}{50}\right)\right\} + 36,2$$
,

для высокоскоростных поездов (категория 4):

$$L_{4 \text{ Amax} 25} = 45,1 \text{ Ig} v_4 + 10 \text{ Ig} \left\{ \text{arctg} \left[\frac{l_4}{50} \right] \right\} - 19,2$$
,

ШХТП потоков железнодорожных поездов

- В п.6.5.9 СП276.1325800 имеется ограничение в величине максимального уровня звука (если расчетные $L_{\rm Amax}$ превышают $L_{\rm Aэкв}$ более чем на 15 дБА, то $L_{\rm Amax} = L_{\rm Aэкв} + 15$). Это ограничение отсутствует в ГОСТ 33325;
- Принимаемое значение максимального уровня звука за время оценки (п.6.5.12, ф-лы (24)-(25)СП) отличается от указаний п.6.2 ф-ла (12) ГОСТ:

СП276.1325800

6.5.12 За максимальный уровень звука потока поездов, следующего по рассматриваемому участку пути, за время оценки (16 ч днем и 8 ч ночью) принимают наибольшее из средних максимальных уровней звука

$$L_{A_{\text{MAKC}},25,k}^{\text{men}} = \max_{i} \left\{ \overline{L}_{A_{\text{MAKC}},25}^{\text{men},k,i} \right\}$$
(24)

где $\overline{L}_{A_{\sf MBKC},25}^{\,{\sf xen.k.i.}}$ — средний максимальный уровень звука, рассчитанный по формуле

$$\overline{L}_{A\text{MBKC},25}^{\text{MEGI},k,i} = 10 \lg \left(\frac{1}{n_i^{\text{RM/H}}} \sum_{j=1}^{n_i^{\text{RM/H}}} 10^{L \frac{\text{MEGI},\text{RM/H},i}{A}} / 10 \right), \tag{25}$$

здесь $n_i^{\text{дм/н}}$ — число проходов поездов i-го типа за дневной или ночной период оценки;

 $L_{A_{\text{MBRC}}j}^{\text{жел, ли}^{\text{и.i.}}}$ — максимальный уровень звука A по формулам (19)—(22) при проходе j-го поезда i-й категории за дневной (дн.) или ночной (н) период оценки, дБА.

ГОСТ33325

За максимальный уровень звука потока поездов, следующего по рассматриваемому участку пути, за время оценки (16 ч днем и 8 ч ночью) принимают наибольшее из вычисленных по формулам (8)—(11) значение

$$L_{Amax25,k} = max, L_{Amax25}$$
, (12)

где L_{.,,,,,,,,,,,,,,,,,,,,} — максимальный уровень звука от поездов i-й категории, дБА.

ШХТП потоков открытых линий метрополитена

Для формулы (27) для расчета эквивалентного уровня звука

$$L_{\text{A 9KB}} = 101 \text{ lg } (N) + 24,91 \text{ lg } (v) + 101 \text{ lg} (l/R_0) + 2,$$

корректный вариант будет аналогично ф-ле (3.60) СП23-104:

$$L_{\text{A 9KB}} = 10 \text{ lg } (N) + 24.9 \text{ lg } (v) + 10 \text{ lg} (l/R_0) + 2,$$

Для формулы (28) для расчета максимального уровня звука

$$L_{A\max} = 35 \lg(N) + 10 \lg \left(\frac{arctg \left(\frac{l}{2} R_0 \right)}{R_0} \right) + 27.7,$$

корректный вариант будет аналогично ф-ле (3.64) СП23-104.

$$L_{A \max} = 35 \lg(v) + 10 \lg \left(\frac{arctg(\frac{l}{2}R_0)}{R_0} \right) + 27.7,$$

Зависимости для вычисления уровней звука в расчетной точке

Эквивалентные уровни звука определяются по ф-ле (31):

$$L_{\rm AэквРT} = L_{\rm Aэкв} - L_{\rm Apac} - L_{\rm Aвo3} - L_{\rm Aв/T} - L_{\rm Aпoк} - L_{\rm Aзел} - L_{\rm Aэкр} - \Delta L_{\rm A}a - L_{\rm Asac} + L_{\rm Aorp} \ ,$$

Коррекции определяются согласно разделам 7.4-7.12 и 11 СП.

Максимальные уровни звука определяются по ф-ле (32):

$$L_{A\mathrm{makcPT}} = L_{A\mathrm{makc}} - L_{\mathrm{Apac}} - L_{\mathrm{Abo3}} - L_{\mathrm{Ab}/\mathrm{T}} - L_{\mathrm{Aпok}} - L_{\mathrm{Aзeл}} - L_{\mathrm{Aэkp}} - \Delta L_{\mathrm{Aa}} - L_{\mathrm{Aa}} - L_{\mathrm{Aaac}} + L_{\mathrm{Aorp}}.$$

Предлагаемый уточненный вариант для ф-лы (32):

$$L_{A{
m MakcPT}}=L_{A{
m Makc}}-L_{{
m Apac}}-L_{{
m Abo3}}-L_{{
m Ab}/{
m T}}-L_{{
m Aзел}}-L_{{
m Aэкр}}.$$

Согласно п. 7.3.4 распространение и снижение шума на местности допускается также рассчитывать по ГОСТ 31295.2

Эквивалентные уровни звука корректируются расстоянием по ф-ле (33):

$$L_{A$$
экв pac.} = 10lg $\left[arctg(\frac{l}{2R_0}) \right] - 10lg \left[arctg(\frac{l}{2R}) \right] \left[-10lg \left(\frac{R}{R_0}\right) \right]$

В этой формуле имеется опечатка.

Вместо $10\lg(R/R_0)$ в скобках должно быть $10\lg(R_0/R)$ (как в ф-ле (7.2) ОДМ 218.2.013-2011).

Предлагаемый вариант ф-лы (33):

$$L_{A$$
экв pac. = $10lg \left[arctg(\frac{l}{2R_0}) \right] - 10lg \left[arctg(\frac{l}{2R}) - 10lg \left(\frac{R_0}{R} \right) \right]$.

При многополосном движении рассчитывается расстояние до каждой полосы по ф-ле (35)

$$R_i = R + (i-1) b_{\text{non}},$$

где $b_{\text{пол}}$ - ширина полосы движения.

Для каждой полосы определяется снижение расстоянием по ф-ле (33) с последующим энергетическим суммированием $L_{A_{9 \text{KB.pac.},Ri.}}$

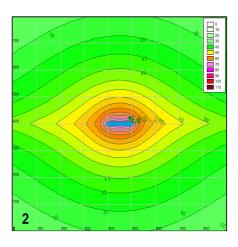
Энергетическое суммирование коррекций $L_{A_{9 \text{кв.рас.},Ri}}$ является не корректным, в результате чего завышается значение снижения шума с расстоянием.

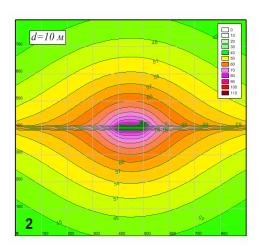
Энергетическое суммирование следует выполнять для итоговых $L_{A_{3 \text{КВ.РТ}i}}$ в расчетных точках, полученных при расчете по ф-ле (31) на расстоянии R_i для каждой отдельной i-й полосы.

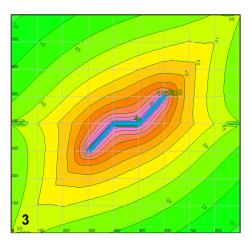
Максимальные уровни звука корректируются расстоянием по ф-ле (36):

$$L_{\text{Амакс.pac}} = -10 \lg \sum_{i=1}^{N+1} \frac{l}{R^2 + (N+1-i)d^2} + 10 \lg \sum_{i=1}^{N+1} \frac{l}{56.25 + (N+1-i)d^2}$$

с учетом среднего расстояния d между машинами.


Корректный вариант ф-лы (36):


$$\Delta L_{\text{Amakc.pac}} = -10 \lg \sum_{i=1}^{N+1} \frac{l}{R^2 + ((N+1-i)d)^2} + 10 \lg \sum_{i=1}^{N+1} \frac{l}{56.25 + ((N+1-i)d)^2}.$$


Отсутствует методика вычисления среднего расстояния d между машинами, и какие машины при этом рассматриваются (только грузовые или все типы).

При использовании формул (33) и (36) совместно с поправкой на угол видимости участка дороги возникают искажения в картине распространения шума в зонах, прилегающих к краям рассматриваемого участка, вызванные комбинационным воздействием поправок на угол видимости и длину источника.

Расчет затухания в воздухе и влияния турбулентности

Влияние турбулентности воздуха $\Delta L_{\rm B/T}$ определяется по ф-ле (45) [1]:

$$\Delta L_{\rm B/T} = 3/[1.6 + 10^5 (R_0/R)^2] ,$$

где R_0 – опорное расстояние (для автотранспортных потоков R_0 = (7.5 м)

При расчете по ф-ле (45) значимое снижение от турбулентности начинает проявляться только на расстоянии свыше 1000м.

Предлагаемый корректный вариант описания для ф-лы (45):

$$\Delta L_{\rm B/T} = 3/[1.6 + 10^5 (R_0/R)^2],$$

где параметр $R_0 = 1$ м (как в ОДМ-2003, ОДМ-2011 и др.).

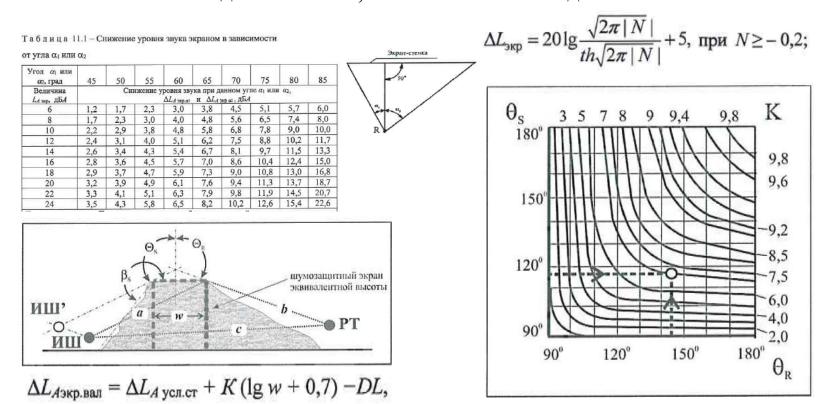
Расчет влияния поверхности территории

Коррекция $\Delta L_{\text{Апок}}$, учитывающая влияние поверхности территории.

Для смешанного покрытия при расчете только уровня звука – по ф-ле (48):

$$L_{\text{Anok}} = 4.8 - \frac{h_s - h_r}{R_{sr}} (17 + \frac{300}{R_r}),$$

В ф-ле (48) в числителе вместо разницы высот (h_s-h_r) акустического центра транспортного потока и расчетной точки должна быть удвоенная средняя высота $2h_m$ траектории распространения звука (как в ф-ле (10) ГОСТ 31295.2).


Предлагаемый корректный вариант для ф-лы (48):

$$L_{\text{Апок}} = 4.8 - \frac{2h_m}{R_{sr}} (17 + \frac{300}{R_r})$$

Расчет снижения уровня шума экранированием

Акустическую эффективность экрана $\Delta L_{A ext{экр}}$ следует рассчитывать в соответствии с методом Маекавы, либо согласно методике ГОСТ 31295.2 .

Не указано как рассчитывать экранирование зданием.

Расчет коррекции на угол видимости участка дороги

Расчет **коррекции на угол видимости** $\Delta L_{A\alpha}$ ведется по формуле (63):

$$\Delta L_{A\alpha} = 10 \lg(\alpha/180).$$

$$L_{A$$
эквРТ = L_{A экв - L_{A рас - L_{A воз - L_{A} вотр , $-L_{A}$ зел - L_{A} зел - $L_$

Предлагаемый вариант формулы (63):

$$\Delta L_{A\alpha} = -10 \lg(\alpha/180).$$

Расчет коррекции, учитывающей влияние придорожной застройки

Коррекция $\Delta L_{\text{Азастр}}$, учитывающая влияние придорожной застройки

Тип застройки	Поправка при усредненных разрывах между домами на линии застройки, м							
	Менее 10	10–20	20–30	Более 30 -1 -2 -3				
Двухсторонняя при расстоянии между линиями застройки, м: 40-50	-2	-2	-1					
30–40	-3	-3	-2					
20–30	-5	-4	-3					
10-20	-6	-5	-4	-4				
Односторонняя при расстоянии до застройки, м: 25-45	-1	-1	0	0				
12–25	-2	-2	-1	-1				
6–12	-3	-3	-2	-1				

- Усложняет выполнение акустических расчетов и построение карт шума при большом количестве расчетных точек и сложной застройке.
- Отсутствует четкое описание границ зоны (в плане и по высоте).

Коррекция $\Delta L_{\text{Аотр}}$, учитывающая отражение звука от ограждающих конструкций, вблизи которых расположена расчетная точка, определяется по ф-ле (64) или по табл.7.5:

$$\Delta L_{\text{Aorp}} = k e^{h_{\text{PT}}/b}$$
.

$h_{p.T}/b$	0,1	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	1,8	2,0
$L_{A ext{orp}}$, дБ A	1,3	1,5	1,8	2,2	2,5	2,8	3,2	3,5	4,0	4,8	6,0

- В описании параметров ф-лы (64) ошибочно указано, что b ширина улицы, а должно быть b полуширина улицы.
- Данные табл.7.5 частично не соответствуют результатам расчета по ф-ле (64), например, при $h_{\rm pr}$ / b =1, по табл.7.5 будет $\Delta L_{\rm Aorp}$ = 2,8 дБА, а по ф-ле (64) $\Delta L_{\rm Aorp}$ =3,4 дБА.

Выводы

- 1. В актуальной документации для расчета транспортного шума имеется ряд опечаток и ограничений;
- 2. Необходима дальнейшая доработка и взаимное согласование отечественной документации, применяемой для акустических расчетов транспортного шума;
- 3. Применение номограмм, таблиц и графиков, может быть затруднительно в сложных и нестандартных случаях акустических расчетов, что приводит к неоправданно большим затратам времени при ручном расчете, одновременно существенно теряя в точности вычислений;
- 4. На настоящий момент представляется достаточно эффективным комбинированный подход к расчёту шумового воздействия транспорта, который заключается в расчёте шумовой характеристики транспортного потока по «дорожным» методикам и дальнейшим расчётом распространения шума по ГОСТ 31295.2.

Спасибо за Ваше внимание!